Optical Rheology of Porcine Sclera by Birefringence Imaging
نویسندگان
چکیده
PURPOSE To investigate a relationship between birefringence and elasticity of porcine sclera ex vivo using polarization-sensitive optical coherence tomography (PS-OCT). METHODS Elastic parameters and birefringence of 19 porcine eyes were measured. Four pieces of scleral strips which were parallel to the limbus, with a width of 4 mm, were dissected from the optic nerve head to the temporal side of each porcine eye. Birefringence of the sclera was measured with a prototype PS-OCT. The strain and force were measured with a uniaxial material tester as the sample was stretched with a speed of 1.8 mm/min after preconditioning. A derivative of the exponentially-fitted stress-strain curve at 0% strain was extracted as the tangent modulus. Power of exponential stress-strain function was also extracted from the fitting. To consider a net stiffness of sclera, structural stiffness was calculated as a product of tangent modulus and thickness. Correlations between birefringence and these elastic parameters were examined. RESULTS Statistically significant correlations between birefringence and all of the elastic parameters were found at 2 central positions. Structural stiffness and power of exponential stress-strain function were correlated with birefringence at the position near the optic nerve head. No correlation was found at the position near the equator. CONCLUSIONS The evidence of correlations between birefringence and elasticity of sclera tested uniaxially was shown for the first time. This work may become a basis for in vivo measurement of scleral biomechanics using PS-OCT.
منابع مشابه
Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo.
The relationship between scleral birefringence and biometric parameters of human eyes in vivo is investigated. Scleral birefringence near the limbus of 21 healthy human eyes was measured using polarization-sensitive optical coherence tomography. Spherical equivalent refractive error, axial eye length, and intraocular pressure (IOP) were measured in all subjects. IOP and scleral birefringence of...
متن کاملAnisotropic Alteration of Scleral Birefringence to Uniaxial Mechanical Strain
PURPOSE To investigate the relationship between scleral mechanical properties, its birefringence, and the anisotropy of birefringence alteration in respect of the direction of the strain by using PS-OCT. METHODS The scleral birefringence of thirty-nine porcine eyes was measured with a prototype PS-OCT. A rectangle strip of sclera with a width of 4 mm was dissected at the temporal region 5 mm ...
متن کاملPosterior rat eye during acute intraocular pressure elevation studied using polarization sensitive optical coherence tomography
Polarization sensitive optical coherence tomography (PS-OCT) operating at 840 nm with axial resolution of 3.8 µm in tissue was used for investigating the posterior rat eye during an acute intraocular pressure (IOP) increase experiment. IOP was elevated in the eyes of anesthetized Sprague Dawley rats by cannulation of the anterior chamber. Three dimensional PS-OCT data sets were acquired at IOP ...
متن کاملJones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography.
Two-dimensional depth-resolved Jones-matrix images of scattering biological tissues were measured with novel double-source double-detector polarization-sensitive optical coherence tomography (OCT). The Jones matrix can be determined in a single scan with this OCT system. The experimental results show that this system can be effectively applied to the measurement of soft tissues, which are less ...
متن کاملRetinal polarization-sensitive optical coherence tomography at 1060 nm with 350 kHz A-scan rate using an Fourier domain mode locked laser.
We present a novel, high-speed, polarization-sensitive, optical coherence tomography set-up for retinal imaging operating at a central wavelength of 1060 nm which was tested for in vivo imaging in healthy human volunteers. We use the system in combination with a Fourier domain mode locked laser with active spectral shaping which enables the use of forward and backward sweep in order to double t...
متن کامل